Full Publications


 (# Equal contribution, * corresponding author, &PhD student supervised )

   2024

  ----------------------------------------------------------------------------------------------------------------------------------

71. Efficient CO and acrolein co-production via paired electrolysis.

Wang, X.#; Li, P.#; Tam, J.; Howe, J. Y.; O’Brien, C. P.; Rasouli, A. S.; Miao, R. K.; Liu, Y.; Ozden, A.; Xie, K.; Wu, J.; Sinton D.; Sargent E. H.* 

Nature Sustainability 2024, 7, 931-937.

**"Behind the paper" story at Nature Research Chemistry Community 


70. Electrochemical CO2-to-CO via enriched oxygen vacancies at gold/ceria interfaces.

Zhao, Z.#; Tan, C.#,&; Sun, P.; Li, F.*; Wang, X.*  

J. Mater. Chem. A 2024, 12, 21716-21722 

**"Journal of Materials Chemistry A HOT Papers" Themed collection

 

69Self-assembled controllable Cu-based perovskite/calcium oxide hybrids with strong interfacial interactions for enhanced CH4 electrosynthesis.

Zhang, Y.#; Xu, Y.#; Chen, Z.#; Zhang, Z.; Liu, X.; Xue, Z.; Tian, X.; Bai, X.; Wang, X.; Huang, M.; Zhu, J.*; Jiang, H.; Zhu, Y.   

ACS Nano 2024, 18, 31466-31477 


68.  A covalent molecular design enabling efficient CO2 reduction in strong acids.

Zhang, Q.#; Musgrave, C. B.#; Song, Y.; Su, J.; Huang, L.; Cheng, L.; Li, G.; Liu, Y.; Xin, Y.; Hu, Q.; Ye, G.; Shen, H.; Wang, X.; Tang, B. Z.; Goddard, W. A.*; Ye, R.*  

Nature Synthesis 2024, 3, 1231-1242. 


67.  Superexchange-stabilized long-distance Cu sites in rock-salt-ordered double perovskite oxides for CO2 electromethanation .

Zhu, J.#,*; Zhang, Y.#; Chen, Z.; Zhang, Z.; Tian, X.; Huang, M.; Bai, X.; Wang, X.; Jiang, H.* 

Nature Commun. 2024, 15, 1565.


   2023

  ----------------------------------------------------------------------------------------------------------------------------------

66. Nanograin boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA cm−2.

Wu, Q.; Du, R.; Wang, P.; Waterhouse, G. I.N.*; Li, J.; Qiu, Y.; Yan, K.; Zhao, Y.; Zhao, W.-W.; Tsai, H.-J.; Chen, M.-C.; Hung, S.-F.*; Wang, X.*; Chen, G.*

ACS Nano 2023, 17, 12884-12894.


    65. Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field.

     Guo, W.#; Zhang, S.#; Zhang, J.; Wu, H.;Ma, Y.; Song, Y.; Cheng, L.; Chang, L.; Li, G.; Liu, Y.; Wei, G.; Gan, L.; Zhu, M.*; Xi, S.*; Wang, X.; Yakobson, B. I.*; Tang, B. Z.*; Ye, R*

Nature Commun. 2023, 14, 7383.


64. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction

Jin, J.#; Wicks, J.#; Min, Q.#; Li, J.#; Hu, Y.; Ma, J.; Wang, Y.; Jiang, Z.; Xu, Y.; Lu, R.; Si, G.; Papangelakis, P.; Shakouri, M.; Xiao, Q.; Ou, P.; Wang, X.; Chen, Z.; Zhang, W.; Yu, K.; Song, J.; Jiang, X.; Qiu, P.; Lou, Y.; Wu, D.; Mao, Y.; Ozden, A.; Wang, C.; Xia, B. Y.; Hu, X.; Dravid, V. P.; Yiu, Y.-M.; Sham, T.-K.; Wang, Z.; Sinton, D.; Mai, L.*; Sargent E. H.*; Pang, Y.* 

Nature 2023, 617, 724-729.


63.  Cu-C(O) interfaces deliver remarkable selectivity and stability for CO2 reduction to C2+ products at industrial current density of 500 mA cm−2

Du, R.#; Wu, Q.#; Zhang, S.#; Wang, P.; Li, Z.; Qiu, Y.; Yan, K.; Waterhouse, G. I. N.; Wang, P.; Zhao, Y.*; Zhao, W.-W.*; Wang, X.*; Chen, G.* 

Small 2023, 19, 2301289.


     62.  Single-site decorated copper enables energy and carbon-efficient CO2 methanation in acidic conditions

Fan, M.#; Miao, R. K.#; Ou, P.#; Xu, Y.#; Lin, Z.-Y.; Lee, T.-J.; Hung, S.-F.; Xie, K.; Huang, J. E.; Ni, W.; Li, J.; Zhao, Y.; Ozden, A.; O’brien, C. P.; Chen, Y.; 

Xiao, Y. C.; Liu, S.; Wicks, J.; Wang, X.; Abed, J.; Shirzadi, E.; Sargent E. H.*; Sinton, D.* 

Nature Commun. 2023, 14, 3314.


   Prior to joining City University of Hong Kong

61. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst.

Wang, X.#; Ou, P.#; Ozden, A.; Hung, S.-F.; Tam J.; Gabardo C. M.; Howe, J. Y.; Sisler J.; Bertens, K.; de Arquer, F. P. G.; Miao, R. K.; O’Brien, C. P.; Wang, Z.; Abed, J.; Rasouli, A. S.; Sun, M.; Ip, A. H.; Sinton, D.; Sargent, E. H.* 

Nature Energy 2022, 7, 170-176. 

**"Behind the paper" story at Nature Research Chemistry Community  


60. High carbon utilization in CO2 reduction to multi-carbon products in acidic media.

Xie, Y.#; Ou, P.#; Wang, X.#; Xu, Z.; Li, Y. C.; Wang, Z.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N.; Wang, Y.; Chen, T.; Lo, B. T. W.; Sinton, D.; Yu, J. C.; Wang Y.*; Sargent, E. H.* 

Nature Catalysis 2022, 5, 564-570. 


59. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation.

Hung, S.-F.#; Xu, A.#; Wang, X.#; Li, F.#; Hsu, S.-H.; Li, Y.; Wicks, J.; Cervantes, E. G.; Rasouli, A. S.; Li, Y. C.; Luo, M.; Nam, D.-H.; Wang, N.; Peng, T.; Yan, Y.; Lee, G.; Sargent, E. H.* 

Nature Commun. 2022, 13, 819.


58. 2022 Roadmap on Low Temperature Electrochemical CO2 Reduction.

Stephens, I. E. L.; Chan, K.; Bagger, A.; Boettcher, S. W.; Bonin, J.; Boutin, E.; Buckley, A. K.; Buonsanti, R.; Cave, E. R.; Chang, X.; Chee, S. W.; da Silva, A. H. M.; de Luna, P.; Einsle, O.; Endrodi, B.; Escudero-Escribano, M.; de Araujo, J. V. F.; Figueiredo, M. C.; Hahn, C.; Hansen, K. U.; Haussener, S.; Hunegnaw, S.; Huo, Z.; Hwang, Y. J.; Janáky, C.; Jayathilake, B. S.; Jiao, F.; Jovanov, Z. P.; Karimi, P.; Koper, M. T. M.; Kuhl, K. P.; Lee, W. H.; Liang, Z.; Liu, X.; Ma, S.; Ma, M.; Oh, H.-S.; Robert, M.; Cuenya, B. R.; Rossmeisl, J.; Roy, C.; Ryan, M. P.; Sargent, E. H.; Sebastián-Pascual, P.; Seger, B.; Steier, L.; Strasser, P.; Varela, A. S.; Vos, R. E.; Wang, X.; Xu, B.; Yadegari, H.; Zhou, Y. 

Journal of Physics: Energy 2022, 4, 042003.


57. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation.

Xu, A.#; Hung, S.-F.#; Cao, A.#; Wang, Z.#; Karmodak, N.; Huang, J. E.; Yan, Y.; Rasouli, A. S.; Ozden, A.; Wu, F.-Y.; Lin, Z.-Y.; Tsai, H.-J.; Lee, T.-J.; Li, F.; Luo, M.; Wang, Y.; Wang, X.; Abed, J.; Wang, Z.; Nam, D.-H.; Li, Y. C.; Ip, A. H.; Sinton, D.; Dong, C.*; Sargent, E. H.* 

Nature Catal. 2022, 5, 1081-1088.


56. High-rate and selective CO2 electrolysis to ethylene via metal-organic-framework-augmented CO2 availability.

Nam, D.-H.#; Shekhah, O.#; Ozden, A.#; McCallum, C.; Li, F.; Wang, X.; Lum, Y.; Lee, T.; Li, J.; Wicks, J.; Johnston, A.; Sinton, D.*; Eddaoudi, M.*; Sargent, E. H.* 

Adv. Mater. 2022, 2207088. 


55.  Ga doping disrupts C-C coupling and promotes methane electroproduction on CuAl catalysts

Rasouli, A. S.; Wang, X.; Wicks, J.; Dinh, C.-T.; Abed, J.; Wu, F.-Y.; Hung, S.-F.; Bertens, K.; Huang, J. E.; Sargent, E. H.* 

Chem Catal. 2022, 2, 908-916.


54. Carbon-efficient carbon dioxide electrolysers.

Ozden, A. #; de Arquer, F. P. G. #; Huang, J. E. #; Wicks, J. #; Sisler, J.; Miao, R. K.; O’Brien, C. P.; Lee, G.; Wang, X.; Ip, H. A.; Sargent, E. H.*; Sinton, D.*

Nature Sustainability 2022, 5, 563-573.


53. Concentrated ethanol electrosynthesis from CO2 via a porous hydrophobic adlayer

Robb, A.; Ozden, A.; Miao, R. K.; O’Brien, C. P.; Xu, Y.; Gabardo, C. M.; Wang, X.; Zhao, N.; de Arquer, F. P. G.; Sargent, E. H.*; Sinton, D.* 

ACS Appl. Mater. Interfaces 2022, 14, 4155-4162.


52. CO2 electrolysis to multicarbon products in strong acid. 

Huang, J. E.#; Li, F.#; Ozden, A.#; Rasouli, A. S.; De Arquer, F. P. G.; Liu, S.; Zhang, S.; Luo, M.; Wang, X.; Lum, Y.; Xu, Y.; Bertens, K.; Miao, R. K.; Dinh, C.-T.; Sinton, D.*; Sargent, E. H.* 

Science 2021, 372, 1074-1078.


51. Systems engineering of Escherichia coli for n-butane production.

Liu, Y.; Khusnutdinova, A.; Chen, J.; Crisante, D.; Batyrova, K.; Raj, K.; Feigis, M.; Shirzadi, E.; Wang, X.; Dorakhan, R.; Wang, X.; Stogios, P. J.; Yakunin, A. F.; Sargent, E. H.; Mahadevan, R.* 

Metabolic Engineering 2022, 74, 98-107.


50. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. 

 Wang, X.#; Ou, P.#; Wicks, J.#; Xie, Y.#; Wang, Y.#; Li, J.; Tam J.; Ren, D.; Howe, J. Y.; Wang, Z.; Ozden, A.; Finfrock, Y. Z. 6,7, Xu, Y.; Li, Y.; Rasouli, A. S.; Bertens K.; Ip, A. H.; Graetzel, M.; Sinton D.; Sargent, E. H.* 

Nature Commun. 2021, 12, 3387.

**"Behind the paper" story at Nature Research Chemistry Community  


49. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2.

Miao, R. K.#; Xu, Y.#; Ozden, A.; Robb, A.; O’Brien, C. P.; Gabardo, C. M.; Lee, G.; Edwards, J. P.; Huang, J. E.; Fan, M.; Wang, X.; Liu, S.; Yan, Y.; Sargent, E. H.*; Sinton, D.* 

Joule 2021, 5, 2742-2753.


48. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers.

Tao, P.#; Zhuang, T.#; Yan, Y.#; Qian, J.#; Dick, G. R.; de Bueren, J. B.; Hung, S.-F.; Zhang, Y.; Wang, Z.; Wicks, J.; de Arquer, F. P. G.; Abed, J.; Wang, N.; Rasouli, A. R.; Lee, G.; Wang, M.; He, D.; Wang, Z.; Liang, Z.; Song, L.; Wang, X.; Chen, B.; Ozden, A.; Lum, Y.; Leow, W. R.; Luo, M.; Meira, D. M.; Ip, H. A.; Luterbacher, J. S.*; Zhao, W.*; Sargent, E. H.* 

J. Am. Chem. Soc. 2021, 143, 17226-17235.


47. Atomistic insights into the nucleation and growth of platinum on palladium nanocrystals.

Gao, W.#; Elnabawy, A. O.#; Hood, Z. D.; Shi, Y.; Wang, X.; Roling, L. T.; Pan, X.*; Mavrikakis, M.*; Xia, Y.*; Chi, M.* 

Nature Commun. 2021, 12, 3215.


46. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly.

Xu, Y.#; Li, F.#; Xu, A.; Edwards, J. P.; Hung, S.-F.; Gabardo, C. M.; O’Brien, C. P.; Liu, S.; Wang, X.; Li, Y.; Wicks, J.; Miao, R. K.; Liu, Y.; Li, J.; Huang, J. E.; Abed, J.; Wang, Y.; Sargent, E. H.*; Sinton, D.* 

Nature Commun. 2021, 12, 3564.


45. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis.

Li, J.#; Ozden, A.#; Wan, M.#; Hu, Y.; Li, F.; Wang, Y.; Zamani, R. R.; Ren, D.; Wang, Z.; Xu, Y.; Nam, D.-H.; Wicks, J.; Chen, B.; Wang, X.; Luo, M.; Graetzel, M.; Che, F.*; Sargent, E. H.*; Sinton. D.* 

Nature Commun. 2021, 12, 2808.


44.  CO2 electroreduction to formate at a partial current density of 930 mA cm–2 with InP colloidal quantum dot derived catalysts

Grigioni, I.#; Sagar, L. K.#; Li, Y. C.; Lee, G.; Yan, Y.; Bertens, K.; Miao, R. K.; Wang, X.; Abed, J.; Won, D. H.; de Arquer, F. P. G.; Ip, A. H.; Sinton, D.; Sargent, E. H.*

ACS Energy Lett. 2021, 6, 9, 79-84.


43. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation.

Wang, X.#; Wang, Z.#; de Arquer, F. P. G.; Dinh, C. -T.; Ozden, A.; Li, Y. C.; Nam, D. -H.; Li, J.; Liu, Y. -S.; Wicks, J.; Chen, Z.; Chi, M.; Chen, B.; Wang, Y.; Tam, J.; Howe, J.; Proppe, A.; Todorovic, P.; Li, F.; Zhuang, T.; Gabardo, C. M.; Krimani, A.; McCallum, C.; Lum, Y.; Luo, M.; Min, Y.; Xu, A.; O’Brien, C. P.; Stephen, B.; Sun, B.; Ip, A. H.; Richter, L.; Kelley, S.; Sinton, D.; Sargent, E. H.* 

Nature Energy 2020, 5, 478-486.

**"Behind the paper" story at Nature Research Chemistry Community  


42. Efficient methane electrosynthesis enabled by tuning local CO2 availability

Wang, X.#; Xu, A.#; Li, F.; Hung, S.-F.; Nam, D.-H.; Gabardo, C. M.; Wang, Z.; Xu, Y.; Ozden, A.; Rasouli, A. S.; Ip, A. H.; Sinton, D.; Sargent, E. H.* 

J. Am. Chem. Soc. 2020, 142, 3525-3531.


41. CO2 electroreduction to methane at production rates exceeding 100 mA/cm2.

Rasouli, A. S.#; Wang, X.#; Wicks, J.; Lee, G.; Peng, T.; Li, F.; McCallum, C.; Dinh, C.-T.; Ip, A. H.; Sinton, D.; Sargent, E. H.* 

ACS Sustainable Chem. Eng. 2020, 8, 14668-14673.


40. One-step synthesis of supported high-index faceted platinum–cobalt nanocatalysts for an enhanced oxygen reduction reaction.

Wang, X.*; Zhao, Z.; Sun, P.; Li, F.* 

ACS Appl. Energy Mater. 2020, 3, 5077-5082.


39. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer.

Ozden, A.#; Li, F.#; de Arquer, F. P. G.; Rosas-Hernández, A.; Thevenon, A.; Wang, Y.; Hung, S.-F.; Wang, X.; Chen, B.; Li, J.; Wicks, J.; Luo, M.; Wang, Z.; Agapie, T.*; Peters, J. C.*; Sargent, E. H.*; Sinton, D.* 

ACS Energy Lett. 2020, 5, 2811-2818.


38. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2.

Arquer, F. P. G.#; Dinh, C. -T.#; Ozden, A.#; Wicks, J.#; McCallum, C.; Kirmani, A. R.; Nam, D.-H.; Gabardo, C. M.; Seifitokaldani, A.; Wang, X.; Li, Y. C.; Li, F.; Edwards, J.; Richter, L. J.; Sinton, D.*; Sargent, E. H.* 

Science 2020, 367,661-666.


37. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces.

Li, F.#; Li, Y. C.#; Wang Z.#; Li, J.; Nam, D.-H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S.-F.; Chen, B.; Wang, Y.; Wicks, J.; Xu, Y.; Li, Y.; Gabardo C. M.; Dinh, C. -T.; Wang, Y.; Zhuang, T.-T.; Sinton, D.; Sargent, E. H.* 

Nature Catal. 2020, 3, 75-82.


36. Molecular tuning of CO2-to-ethylene conversion.

Li, F.#; Thevenon, A.#; Rosas-Hernández, A.#; Wang Z.#; Li, Y.#; Gabardo C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; Edwards, J. P.; Xu, Y.; McCallum, C.; Tao L.; Liang, Z.-Q.; Luo, M.; Wang, X.; Li, H.; O’Brien, C. P.; Tan, C.-S.; Nam, D.-H.; Quintero-Bermudez, R.; Zhuang T.-T.; Li, Y. C.; Han, Z.; Britt, R. D.; Sinton, D.; Agapie, T.*; Peters, J. C.*; Sargent, E. H.* 

Nature 2020, 577, 509-513.


35. Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs.

Li, Y.#; Xu, A.#; Lum, Y.#; Wang, X.; Hung, S.-F.; Chen, B.; Wang, Z.; Xu, Y.; Li, F.; Abed, J.; Huang, J. E.; Rasouli, A. S.; Wicks, J.; Sagar, L. K.; Peng, T.; Ip, A. H.; Sinton, D.; Jiang, H.; Li, C.*; Sargent, E. H.* 

Nature Commun. 2020, 11, 6190.


34. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites.

Wang, X.#; Wang, Z.#; Zhuang, T.-T.; Dinh, C.-T.; Li, J.; Nam, D.-H.; Li, F.; Huang, C.-W.; Tan, C.-S.; Chen, Z.; Chi, M.; Gabardo, C. M.; Seifitokaldani, A.; Todorović, P.; Proppe, A.; Pang, Y.; Kirmani, A. R.; Wang, Y.; Ip, A. H.; Richter, L. J.; Scheffel, B.; Xu, A.; Lo, S.-C.; Kelley, S. O.; Sinton, D.; Sargent, E. H.* 

Nature Commun. 2019, 10, 5186. (Top 50 Chemistry and Materials Sciences Articles in 2019)


33. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen.

Luo, M.#; Wang, Z.#; Li, Y. C.#; Li, J.; Li, F.; Lum, Y.; Nam, D.-H.; Chen, B.; Wicks, J.; Xu, A.; Zhuang, T.-T.; Leow, W, R.; Wang, X.; Dinh, C.-T.; Wang, Y.; Wang, Y.; Sinton, D.; Sargent, E. H.* 

Nature Commun. 2019, 10, 5814.


32. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper.

Pang, Y.#; Li, J.#; Wang, Z.; Tan, C.; Hsieh, P.; Zhuang, T.; Liang, Z.; Zou, C.; Wang, X.; De Luna, P.; Edwards, J. P.; Xu, Y.; Li, F.; Dinh, C.; Zhong, M.; Lou, Y.; Wu, D.; Chen, L.; Sargent, E. H.*; Sinton, D.* 

Nature Catal. 2019, 2, 251-258.


31. Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products

Zhuang, T.-T.#; Nam, D.-H.#; Wang, Z.; Li, H.-H.; Gabardo C. M.; Li, Y.; Liang, Z.-Q.; Li, J.; Liu, X.-J.; Chen, B.; Leow, W. R.; Wang, X.; Li, F.; Lum, Y.; Wicks, J.; O’Brien, C. P.; Peng, T.; Ip, A. H.; Sham, T.-K.; Yu, S.-H.; Sinton, D.; Sargent, E. H.* 

Nature Commun. 2019, 10, 4807.


30. Hollow metal nanocrystals with ultrathin, porous walls and well-controlled surface structures.

Zhao, M.#; Wang, X.#; Yang, X.#; Gilroy, K. D.; Qin, D.; Xia, Y.* 

Adv. Mater. 2018, 1801956. 


29. Truncated concave octahedral Cu2O nanocrystals with {hkk} high-index facets for enhanced activity and stability in heterogeneous catalytic azide-alkyne cycloaddition. 

Zhao, Z.; Wang, X.*; Si, J.; Yue, C.; Xia, C.; Li, F.* 

Green Chem. 2018, 20, 832-837.


28. Direct in situ observation and analysis of the formation of palladium nanocrystals with high-index facets.

Gao, W.*; Hou, Y.; Hood, Z. D.; Wang, X.; More, K.; Wu, R.; Xia, Y.; Pan, X.*; Chi, M.* 

Nano Lett. 2018, 18, 7004−7013.


27. Toward affordable and sustainable use of precious metals in catalysis and nanomedicine.

Xia, Y.*; Zhao, M.; Wang, X.; Huo, D. 

MRS Bull. 2018, 43, 860-869.


26. Understanding the stability of Pt-based nanocages under thermal stress using in situ electron microscopy.

Vara, M.; Wang, X.; Howe, J.; Chi, M.; Xia, Y*. 

ChemNanoMat 2018, 4, 112-117.


25. The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties

Wang, X.*#; Chen, J.#; Zeng, J.; Wang, Q.; Li, Z.; Qin, R.; Wu, C.; Xie, Z.*; Zheng, L. 

Nanoscale 2017, 9, 6643-6648.


24. Understanding the thermal stability of palladium–platinum core–shell nanocrystals by in situ transmission electron microscopy and density functional theory

Vara, M.#; Roling, L. T.#; Wang, X.#; Elnabawy, A. O.; Hood, Z. D.; Chi. M.; Mavrikakis. M.; Xia, Y.* 

ACS Nano 2017, 11, 4571-4581.


23. Pt-based icosahedral nanocages: using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction.

 Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J.; Xie, Z.; Xia, Y.* 

Nano Lett. 2016, 16, 1467-1471.


22. Facile synthesis of Pt–Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates.

Wang, X.; Luo, M.; Huang, H.; Chi, M.; Howe, J.; Xie, Z.; Xia, Y.* 

ChemNanoMat 2016, 2, 1086-1091. (It was selected by the editors as a VIP article)


21. Rational design and synthesis of noble-metal nanoframes for catalytic and photonic applications.

Wang, X.; Ruditskiy, A.; Xia, Y.* 

Natl. Sci. Rev. 2016, 3, 520-533. 


20. Scalable synthesis of palladium icosahedra in plug reactors for the production of oxygen reduction reaction catalysts.

Wang, H.; Niu, G.; Zhou, M.; Wang, X.; Park, J.; Bao, S.; Chi, M.; Cai, Z.; Xia, Y.* 

ChemCatChem 2016, 8, 1658-1664.


19. Shape-controlled synthesis of CO-free Pd nanocrystals with the use of formic acid as a reducing agent. 

Bao, S.; Yang, X.; Luo, M.; Zhou, S.; Wang, X.; Xie, Z.; Xia, Y.* 

Chem. Commun. 2016, 52, 12594-12597.


18. Nucleation-mediated synthesis and enhanced catalytic properties of Au–Pd bimetallic tripods and bipyramids with twinned structures and high-energy facets.

Zhang, L.*; Chen, Q.; Wang, X.; Jiang, Z.* 

Nanoscale 2016, 8, 2819-2825.


17. Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability. 

Wang, X.; Vara, M.; Luo, M.; Huang, H.; Ruditskiy, A.; Park, J.; Bao, S.; Liu, J.; Howe, J.; Chi, M.; Xie Z.; Xia, Y.* 

J. Am. Chem. Soc. 2015, 137, 15036-15042.


16. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability toward oxygen reduction.

 Wang, X.#; Choi, S.-I.#; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.; Herron, J. A.; Mavrikakis, M.*; Xia, Y.* 

Nature Commun. 2015, 6, 7594.


15. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets.

Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Lu, N.; Herron, J. A.; Xie, Z.; Mavrikakis, M.; Xia, Y.* 

Science 2015, 349, 412-416.


14. A surfactant free synthesis and formation mechanism of hollow Cu2O nanocubes using Clˉ ions as the morphology regulator.

Wang, Q.; Kuang, Q.; Wang, K.; Wang, X.; Xie, Z.* 

RSC Adv. 2015, 5, 61421-61425.


13. Mesoporous Mn3O4–CoO core–shell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation.

Xiao, J.*; Wan, L.; Wang, X.; Kuang, Q.; Dong, S.; Xiao, F.; Wang, S.* 

J. Mater. Chem. A 2014, 2, 3794-3800.


12. Controlled synthesis of concave Cu2O microcrystals enclosed by {hhl} high-index facets and enhanced catalytic activity.

Wang, X.; Liu, C.; Zheng, B.; Jiang, Y.; Zhang, L.; Xie, Z.*; Zheng, L. 

J. Mater. Chem. A 2013, 1, 282-287.


11. Shape-controlled synthesis of metal oxides micro/nanocrystals enclosed by crystal facets of high surface energy

Wang, X.; Jiang, Z.; Jiang, Y.; Lin, H.; Kuang, Q.; Xie, Z.* 

Sci. China Chem. 2013, 43, 1630-1639. 


10. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.

Kuang. Q.; Wang, X.; Jiang, Z.; Xie, Z.*; Zheng, L. 

Acc. Chem. Res. 2013, 47, 308-318. 


9. High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy.

Zheng, B.; Wang, X.; Liu, C.; Tan, K.*; Xie, Z.*; Zheng, L. 

J. Mater. Chem. A 2013, 1, 12635-12640.


8. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation.

Hou, C.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.*; Zheng, L. 

CrystEngComm 2013, 15, 6127-6130.


7. Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes.

Liu, C.; Han, X.; Xie, S.; Kuang, Q.*; Wang, X.; Jin, M.; Xie, Z.; Zheng, L. 

Chem. Asian J. 2013, 8, 282-289.


6. Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanoparticles with exposed high-energy facets.

Wang, X.; Han, X.; Xie, S.; Kuang, Q.*; Jiang, Y.; Zhang, S.; Mu, X.; Chen, G.; Xie, Z.*; Zheng, L. 

Chem. Eur. J. 2012, 18, 2283-2289.


5. Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra.

Wang, X.; Jiang, Z.*; Zheng, B.; Xie, Z.*; Zheng, L. 

CrystEngComm 2012, 14, 7579-7582.


4. Carbonate ions-assisted syntheses of anatase TiO2 nanoparticles exposed with high energy (001) facets.

Han. X.; Wang, X.; Xie, S.; Kuang, Q.*; Ouyang, J.; Xie, Z.*; Zheng, L. 

RSC Adv. 2012, 2, 3251-3253.


3. Control of anatase TiO2 nanocrystals with a series of high-energy crystal facets via a fuorine-free strategy.

Han. X.; Zheng, B.; Ouyang, J.; Wang, X.; Kuang, Q.*; Jiang, Y.; Xie, Z.*; Zheng, L. 

Chem. Asian J. 2012, 7, 2538-2542.


2. Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes

Xie, S.; Zheng, B.; Kuang, Q.*; Wang, X.; Xie, Z.*; Zheng, L. 

CrystEngComm 2012, 14, 7715-7720.


1. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: the case of Au–Pd alloy trisoctahedral nanocrystals with tunable composition. 

Zhang, J.; Zhang, L.; Jia, Y.; Chen, G.; Wang, X.; Kuang, Q.*; Xie, Z.*; Zheng, L. 

Nano Res. 2012, 5, 618-629.